Properties

Label 1680.1429
Modulus $1680$
Conductor $80$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,0,2,0]))
 
Copy content pari:[g,chi] = znchar(Mod(1429,1680))
 

Basic properties

Modulus: \(1680\)
Conductor: \(80\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{80}(69,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1680.cb

\(\chi_{1680}(589,\cdot)\) \(\chi_{1680}(1429,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.51200.1

Values on generators

\((1471,421,1121,337,241)\) → \((1,i,1,-1,1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1680 }(1429, a) \) \(1\)\(1\)\(i\)\(i\)\(-1\)\(-i\)\(1\)\(-i\)\(1\)\(-i\)\(-1\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1680 }(1429,a) \;\) at \(\;a = \) e.g. 2