Properties

Label 1680.1181
Modulus $1680$
Conductor $336$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,9,6,0,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1181,1680))
 

Basic properties

Modulus: \(1680\)
Conductor: \(336\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{336}(173,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1680.ey

\(\chi_{1680}(101,\cdot)\) \(\chi_{1680}(341,\cdot)\) \(\chi_{1680}(941,\cdot)\) \(\chi_{1680}(1181,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.1768877612408537874432.1

Values on generators

\((1471,421,1121,337,241)\) → \((1,-i,-1,1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1680 }(1181, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(-1\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1680 }(1181,a) \;\) at \(\;a = \) e.g. 2