sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1680, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,2,1,0]))
pari:[g,chi] = znchar(Mod(1037,1680))
\(\chi_{1680}(533,\cdot)\)
\(\chi_{1680}(1037,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,421,1121,337,241)\) → \((1,-i,-1,i,1)\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1680 }(1037, a) \) |
\(1\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(i\) | \(1\) | \(1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)