Properties

Label 1650.941
Modulus $1650$
Conductor $825$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1650, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,2,9]))
 
pari: [g,chi] = znchar(Mod(941,1650))
 

Basic properties

Modulus: \(1650\)
Conductor: \(825\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{825}(116,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1650.bv

\(\chi_{1650}(761,\cdot)\) \(\chi_{1650}(821,\cdot)\) \(\chi_{1650}(941,\cdot)\) \(\chi_{1650}(1031,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.87430006242828369140625.2

Values on generators

\((551,727,1201)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1650 }(941, a) \) \(1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(1\)\(e\left(\frac{3}{5}\right)\)\(1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1650 }(941,a) \;\) at \(\;a = \) e.g. 2