sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1650, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,19,2]))
pari:[g,chi] = znchar(Mod(13,1650))
\(\chi_{1650}(13,\cdot)\)
\(\chi_{1650}(127,\cdot)\)
\(\chi_{1650}(523,\cdot)\)
\(\chi_{1650}(547,\cdot)\)
\(\chi_{1650}(667,\cdot)\)
\(\chi_{1650}(733,\cdot)\)
\(\chi_{1650}(937,\cdot)\)
\(\chi_{1650}(1603,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((551,727,1201)\) → \((1,e\left(\frac{19}{20}\right),e\left(\frac{1}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1650 }(13, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(i\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-i\) | \(e\left(\frac{1}{10}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)