sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(164025, base_ring=CyclotomicField(43740))
M = H._module
chi = DirichletCharacter(H, M([13210,41553]))
pari:[g,chi] = znchar(Mod(263,164025))
| Modulus: | \(164025\) | |
| Conductor: | \(164025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(43740\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{164025}(2,\cdot)\)
\(\chi_{164025}(23,\cdot)\)
\(\chi_{164025}(38,\cdot)\)
\(\chi_{164025}(47,\cdot)\)
\(\chi_{164025}(77,\cdot)\)
\(\chi_{164025}(83,\cdot)\)
\(\chi_{164025}(92,\cdot)\)
\(\chi_{164025}(113,\cdot)\)
\(\chi_{164025}(122,\cdot)\)
\(\chi_{164025}(128,\cdot)\)
\(\chi_{164025}(137,\cdot)\)
\(\chi_{164025}(158,\cdot)\)
\(\chi_{164025}(167,\cdot)\)
\(\chi_{164025}(173,\cdot)\)
\(\chi_{164025}(203,\cdot)\)
\(\chi_{164025}(212,\cdot)\)
\(\chi_{164025}(227,\cdot)\)
\(\chi_{164025}(248,\cdot)\)
\(\chi_{164025}(263,\cdot)\)
\(\chi_{164025}(272,\cdot)\)
\(\chi_{164025}(302,\cdot)\)
\(\chi_{164025}(308,\cdot)\)
\(\chi_{164025}(317,\cdot)\)
\(\chi_{164025}(338,\cdot)\)
\(\chi_{164025}(347,\cdot)\)
\(\chi_{164025}(353,\cdot)\)
\(\chi_{164025}(362,\cdot)\)
\(\chi_{164025}(383,\cdot)\)
\(\chi_{164025}(392,\cdot)\)
\(\chi_{164025}(398,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((59051,104977)\) → \((e\left(\frac{1321}{4374}\right),e\left(\frac{19}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 164025 }(263, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11023}{43740}\right)\) | \(e\left(\frac{11023}{21870}\right)\) | \(e\left(\frac{665}{8748}\right)\) | \(e\left(\frac{11023}{14580}\right)\) | \(e\left(\frac{2489}{21870}\right)\) | \(e\left(\frac{9047}{43740}\right)\) | \(e\left(\frac{3587}{10935}\right)\) | \(e\left(\frac{88}{10935}\right)\) | \(e\left(\frac{14333}{14580}\right)\) | \(e\left(\frac{1019}{7290}\right)\) |
sage:chi.jacobi_sum(n)