sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(164025, base_ring=CyclotomicField(21870))
M = H._module
chi = DirichletCharacter(H, M([9265,6561]))
pari:[g,chi] = znchar(Mod(14,164025))
| Modulus: | \(164025\) | |
| Conductor: | \(164025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(21870\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{164025}(14,\cdot)\)
\(\chi_{164025}(29,\cdot)\)
\(\chi_{164025}(59,\cdot)\)
\(\chi_{164025}(104,\cdot)\)
\(\chi_{164025}(119,\cdot)\)
\(\chi_{164025}(164,\cdot)\)
\(\chi_{164025}(194,\cdot)\)
\(\chi_{164025}(209,\cdot)\)
\(\chi_{164025}(239,\cdot)\)
\(\chi_{164025}(254,\cdot)\)
\(\chi_{164025}(284,\cdot)\)
\(\chi_{164025}(329,\cdot)\)
\(\chi_{164025}(344,\cdot)\)
\(\chi_{164025}(389,\cdot)\)
\(\chi_{164025}(419,\cdot)\)
\(\chi_{164025}(434,\cdot)\)
\(\chi_{164025}(464,\cdot)\)
\(\chi_{164025}(479,\cdot)\)
\(\chi_{164025}(509,\cdot)\)
\(\chi_{164025}(554,\cdot)\)
\(\chi_{164025}(569,\cdot)\)
\(\chi_{164025}(614,\cdot)\)
\(\chi_{164025}(644,\cdot)\)
\(\chi_{164025}(659,\cdot)\)
\(\chi_{164025}(689,\cdot)\)
\(\chi_{164025}(704,\cdot)\)
\(\chi_{164025}(734,\cdot)\)
\(\chi_{164025}(779,\cdot)\)
\(\chi_{164025}(794,\cdot)\)
\(\chi_{164025}(839,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((59051,104977)\) → \((e\left(\frac{1853}{4374}\right),e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 164025 }(14, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7913}{10935}\right)\) | \(e\left(\frac{4891}{10935}\right)\) | \(e\left(\frac{353}{4374}\right)\) | \(e\left(\frac{623}{3645}\right)\) | \(e\left(\frac{19951}{21870}\right)\) | \(e\left(\frac{17339}{21870}\right)\) | \(e\left(\frac{17591}{21870}\right)\) | \(e\left(\frac{9782}{10935}\right)\) | \(e\left(\frac{778}{3645}\right)\) | \(e\left(\frac{428}{3645}\right)\) |
sage:chi.jacobi_sum(n)