Properties

Label 164025.14
Modulus $164025$
Conductor $164025$
Order $21870$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164025, base_ring=CyclotomicField(21870)) M = H._module chi = DirichletCharacter(H, M([9265,6561]))
 
Copy content pari:[g,chi] = znchar(Mod(14,164025))
 

Basic properties

Modulus: \(164025\)
Conductor: \(164025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21870\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 164025.dn

\(\chi_{164025}(14,\cdot)\) \(\chi_{164025}(29,\cdot)\) \(\chi_{164025}(59,\cdot)\) \(\chi_{164025}(104,\cdot)\) \(\chi_{164025}(119,\cdot)\) \(\chi_{164025}(164,\cdot)\) \(\chi_{164025}(194,\cdot)\) \(\chi_{164025}(209,\cdot)\) \(\chi_{164025}(239,\cdot)\) \(\chi_{164025}(254,\cdot)\) \(\chi_{164025}(284,\cdot)\) \(\chi_{164025}(329,\cdot)\) \(\chi_{164025}(344,\cdot)\) \(\chi_{164025}(389,\cdot)\) \(\chi_{164025}(419,\cdot)\) \(\chi_{164025}(434,\cdot)\) \(\chi_{164025}(464,\cdot)\) \(\chi_{164025}(479,\cdot)\) \(\chi_{164025}(509,\cdot)\) \(\chi_{164025}(554,\cdot)\) \(\chi_{164025}(569,\cdot)\) \(\chi_{164025}(614,\cdot)\) \(\chi_{164025}(644,\cdot)\) \(\chi_{164025}(659,\cdot)\) \(\chi_{164025}(689,\cdot)\) \(\chi_{164025}(704,\cdot)\) \(\chi_{164025}(734,\cdot)\) \(\chi_{164025}(779,\cdot)\) \(\chi_{164025}(794,\cdot)\) \(\chi_{164025}(839,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{10935})$
Fixed field: Number field defined by a degree 21870 polynomial (not computed)

Values on generators

\((59051,104977)\) → \((e\left(\frac{1853}{4374}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 164025 }(14, a) \) \(-1\)\(1\)\(e\left(\frac{7913}{10935}\right)\)\(e\left(\frac{4891}{10935}\right)\)\(e\left(\frac{353}{4374}\right)\)\(e\left(\frac{623}{3645}\right)\)\(e\left(\frac{19951}{21870}\right)\)\(e\left(\frac{17339}{21870}\right)\)\(e\left(\frac{17591}{21870}\right)\)\(e\left(\frac{9782}{10935}\right)\)\(e\left(\frac{778}{3645}\right)\)\(e\left(\frac{428}{3645}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 164025 }(14,a) \;\) at \(\;a = \) e.g. 2