sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(164025, base_ring=CyclotomicField(43740))
M = H._module
chi = DirichletCharacter(H, M([27620,41553]))
pari:[g,chi] = znchar(Mod(13,164025))
| Modulus: | \(164025\) | |
| Conductor: | \(164025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(43740\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{164025}(13,\cdot)\)
\(\chi_{164025}(22,\cdot)\)
\(\chi_{164025}(52,\cdot)\)
\(\chi_{164025}(58,\cdot)\)
\(\chi_{164025}(67,\cdot)\)
\(\chi_{164025}(88,\cdot)\)
\(\chi_{164025}(97,\cdot)\)
\(\chi_{164025}(103,\cdot)\)
\(\chi_{164025}(112,\cdot)\)
\(\chi_{164025}(133,\cdot)\)
\(\chi_{164025}(142,\cdot)\)
\(\chi_{164025}(148,\cdot)\)
\(\chi_{164025}(178,\cdot)\)
\(\chi_{164025}(187,\cdot)\)
\(\chi_{164025}(202,\cdot)\)
\(\chi_{164025}(223,\cdot)\)
\(\chi_{164025}(238,\cdot)\)
\(\chi_{164025}(247,\cdot)\)
\(\chi_{164025}(277,\cdot)\)
\(\chi_{164025}(283,\cdot)\)
\(\chi_{164025}(292,\cdot)\)
\(\chi_{164025}(313,\cdot)\)
\(\chi_{164025}(322,\cdot)\)
\(\chi_{164025}(328,\cdot)\)
\(\chi_{164025}(337,\cdot)\)
\(\chi_{164025}(358,\cdot)\)
\(\chi_{164025}(367,\cdot)\)
\(\chi_{164025}(373,\cdot)\)
\(\chi_{164025}(403,\cdot)\)
\(\chi_{164025}(412,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((59051,104977)\) → \((e\left(\frac{1381}{2187}\right),e\left(\frac{19}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 164025 }(13, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25433}{43740}\right)\) | \(e\left(\frac{3563}{21870}\right)\) | \(e\left(\frac{1849}{8748}\right)\) | \(e\left(\frac{10853}{14580}\right)\) | \(e\left(\frac{1367}{10935}\right)\) | \(e\left(\frac{6067}{43740}\right)\) | \(e\left(\frac{17339}{21870}\right)\) | \(e\left(\frac{3563}{10935}\right)\) | \(e\left(\frac{7603}{14580}\right)\) | \(e\left(\frac{6589}{7290}\right)\) |
sage:chi.jacobi_sum(n)