sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1632, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([4,5,4,4]))
pari:[g,chi] = znchar(Mod(203,1632))
| Modulus: | \(1632\) | |
| Conductor: | \(1632\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(8\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1632}(203,\cdot)\)
\(\chi_{1632}(611,\cdot)\)
\(\chi_{1632}(1019,\cdot)\)
\(\chi_{1632}(1427,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,613,545,1057)\) → \((-1,e\left(\frac{5}{8}\right),-1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 1632 }(203, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) |
sage:chi.jacobi_sum(n)