Properties

Label 1617.1231
Modulus $1617$
Conductor $539$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1617, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,9,7]))
 
Copy content pari:[g,chi] = znchar(Mod(1231,1617))
 

Basic properties

Modulus: \(1617\)
Conductor: \(539\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(153,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1617.be

\(\chi_{1617}(76,\cdot)\) \(\chi_{1617}(307,\cdot)\) \(\chi_{1617}(769,\cdot)\) \(\chi_{1617}(1000,\cdot)\) \(\chi_{1617}(1231,\cdot)\) \(\chi_{1617}(1462,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.26133633514125646560024046997.1

Values on generators

\((1079,199,442)\) → \((1,e\left(\frac{9}{14}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 1617 }(1231, a) \) \(1\)\(1\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(1\)\(e\left(\frac{1}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1617 }(1231,a) \;\) at \(\;a = \) e.g. 2