sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(160083, base_ring=CyclotomicField(6930))
M = H._module
chi = DirichletCharacter(H, M([3850,2640,2394]))
pari:[g,chi] = znchar(Mod(25,160083))
| Modulus: | \(160083\) | |
| Conductor: | \(160083\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(3465\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{160083}(25,\cdot)\)
\(\chi_{160083}(58,\cdot)\)
\(\chi_{160083}(247,\cdot)\)
\(\chi_{160083}(466,\cdot)\)
\(\chi_{160083}(499,\cdot)\)
\(\chi_{160083}(592,\cdot)\)
\(\chi_{160083}(625,\cdot)\)
\(\chi_{160083}(718,\cdot)\)
\(\chi_{160083}(751,\cdot)\)
\(\chi_{160083}(907,\cdot)\)
\(\chi_{160083}(940,\cdot)\)
\(\chi_{160083}(1159,\cdot)\)
\(\chi_{160083}(1192,\cdot)\)
\(\chi_{160083}(1285,\cdot)\)
\(\chi_{160083}(1318,\cdot)\)
\(\chi_{160083}(1411,\cdot)\)
\(\chi_{160083}(1444,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((130439,19603,19846)\) → \((e\left(\frac{5}{9}\right),e\left(\frac{8}{21}\right),e\left(\frac{19}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 160083 }(25, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2792}{3465}\right)\) | \(e\left(\frac{2119}{3465}\right)\) | \(e\left(\frac{1348}{3465}\right)\) | \(e\left(\frac{482}{1155}\right)\) | \(e\left(\frac{15}{77}\right)\) | \(e\left(\frac{3142}{3465}\right)\) | \(e\left(\frac{773}{3465}\right)\) | \(e\left(\frac{302}{385}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{2}{3465}\right)\) |
sage:chi.jacobi_sum(n)