sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1588, base_ring=CyclotomicField(396))
M = H._module
chi = DirichletCharacter(H, M([198,59]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1371,1588))
         
     
    
  
   | Modulus: |  \(1588\) |   |  
   | Conductor: |  \(1588\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(396\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{1588}(7,\cdot)\)
  \(\chi_{1588}(39,\cdot)\)
  \(\chi_{1588}(51,\cdot)\)
  \(\chi_{1588}(59,\cdot)\)
  \(\chi_{1588}(135,\cdot)\)
  \(\chi_{1588}(139,\cdot)\)
  \(\chi_{1588}(143,\cdot)\)
  \(\chi_{1588}(155,\cdot)\)
  \(\chi_{1588}(159,\cdot)\)
  \(\chi_{1588}(175,\cdot)\)
  \(\chi_{1588}(187,\cdot)\)
  \(\chi_{1588}(211,\cdot)\)
  \(\chi_{1588}(215,\cdot)\)
  \(\chi_{1588}(223,\cdot)\)
  \(\chi_{1588}(227,\cdot)\)
  \(\chi_{1588}(235,\cdot)\)
  \(\chi_{1588}(239,\cdot)\)
  \(\chi_{1588}(247,\cdot)\)
  \(\chi_{1588}(251,\cdot)\)
  \(\chi_{1588}(259,\cdot)\)
  \(\chi_{1588}(263,\cdot)\)
  \(\chi_{1588}(283,\cdot)\)
  \(\chi_{1588}(299,\cdot)\)
  \(\chi_{1588}(303,\cdot)\)
  \(\chi_{1588}(323,\cdot)\)
  \(\chi_{1588}(331,\cdot)\)
  \(\chi_{1588}(339,\cdot)\)
  \(\chi_{1588}(347,\cdot)\)
  \(\chi_{1588}(351,\cdot)\)
  \(\chi_{1588}(359,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((795,5)\) → \((-1,e\left(\frac{59}{396}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |       
    
    
      | \( \chi_{ 1588 }(1371, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{61}{99}\right)\) | \(e\left(\frac{59}{396}\right)\) | \(e\left(\frac{205}{396}\right)\) | \(e\left(\frac{23}{99}\right)\) | \(e\left(\frac{71}{198}\right)\) | \(e\left(\frac{19}{396}\right)\) | \(e\left(\frac{101}{132}\right)\) | \(e\left(\frac{17}{132}\right)\) | \(e\left(\frac{113}{198}\right)\) | \(e\left(\frac{53}{396}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)