sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1588, base_ring=CyclotomicField(396))
M = H._module
chi = DirichletCharacter(H, M([198,151]))
pari:[g,chi] = znchar(Mod(135,1588))
Modulus: | \(1588\) | |
Conductor: | \(1588\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(396\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1588}(7,\cdot)\)
\(\chi_{1588}(39,\cdot)\)
\(\chi_{1588}(51,\cdot)\)
\(\chi_{1588}(59,\cdot)\)
\(\chi_{1588}(135,\cdot)\)
\(\chi_{1588}(139,\cdot)\)
\(\chi_{1588}(143,\cdot)\)
\(\chi_{1588}(155,\cdot)\)
\(\chi_{1588}(159,\cdot)\)
\(\chi_{1588}(175,\cdot)\)
\(\chi_{1588}(187,\cdot)\)
\(\chi_{1588}(211,\cdot)\)
\(\chi_{1588}(215,\cdot)\)
\(\chi_{1588}(223,\cdot)\)
\(\chi_{1588}(227,\cdot)\)
\(\chi_{1588}(235,\cdot)\)
\(\chi_{1588}(239,\cdot)\)
\(\chi_{1588}(247,\cdot)\)
\(\chi_{1588}(251,\cdot)\)
\(\chi_{1588}(259,\cdot)\)
\(\chi_{1588}(263,\cdot)\)
\(\chi_{1588}(283,\cdot)\)
\(\chi_{1588}(299,\cdot)\)
\(\chi_{1588}(303,\cdot)\)
\(\chi_{1588}(323,\cdot)\)
\(\chi_{1588}(331,\cdot)\)
\(\chi_{1588}(339,\cdot)\)
\(\chi_{1588}(347,\cdot)\)
\(\chi_{1588}(351,\cdot)\)
\(\chi_{1588}(359,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((795,5)\) → \((-1,e\left(\frac{151}{396}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 1588 }(135, a) \) |
\(1\) | \(1\) | \(e\left(\frac{89}{99}\right)\) | \(e\left(\frac{151}{396}\right)\) | \(e\left(\frac{377}{396}\right)\) | \(e\left(\frac{79}{99}\right)\) | \(e\left(\frac{175}{198}\right)\) | \(e\left(\frac{203}{396}\right)\) | \(e\left(\frac{37}{132}\right)\) | \(e\left(\frac{1}{132}\right)\) | \(e\left(\frac{61}{198}\right)\) | \(e\left(\frac{337}{396}\right)\) |
sage:chi.jacobi_sum(n)