![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1588, base_ring=CyclotomicField(396))
M = H._module
chi = DirichletCharacter(H, M([198,119]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1588, base_ring=CyclotomicField(396))
M = H._module
chi = DirichletCharacter(H, M([198,119]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1215,1588))
        pari:[g,chi] = znchar(Mod(1215,1588))
         
     
    
  
   | Modulus: | \(1588\) |  | 
   | Conductor: | \(1588\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(396\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{1588}(7,\cdot)\)
  \(\chi_{1588}(39,\cdot)\)
  \(\chi_{1588}(51,\cdot)\)
  \(\chi_{1588}(59,\cdot)\)
  \(\chi_{1588}(135,\cdot)\)
  \(\chi_{1588}(139,\cdot)\)
  \(\chi_{1588}(143,\cdot)\)
  \(\chi_{1588}(155,\cdot)\)
  \(\chi_{1588}(159,\cdot)\)
  \(\chi_{1588}(175,\cdot)\)
  \(\chi_{1588}(187,\cdot)\)
  \(\chi_{1588}(211,\cdot)\)
  \(\chi_{1588}(215,\cdot)\)
  \(\chi_{1588}(223,\cdot)\)
  \(\chi_{1588}(227,\cdot)\)
  \(\chi_{1588}(235,\cdot)\)
  \(\chi_{1588}(239,\cdot)\)
  \(\chi_{1588}(247,\cdot)\)
  \(\chi_{1588}(251,\cdot)\)
  \(\chi_{1588}(259,\cdot)\)
  \(\chi_{1588}(263,\cdot)\)
  \(\chi_{1588}(283,\cdot)\)
  \(\chi_{1588}(299,\cdot)\)
  \(\chi_{1588}(303,\cdot)\)
  \(\chi_{1588}(323,\cdot)\)
  \(\chi_{1588}(331,\cdot)\)
  \(\chi_{1588}(339,\cdot)\)
  \(\chi_{1588}(347,\cdot)\)
  \(\chi_{1588}(351,\cdot)\)
  \(\chi_{1588}(359,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((795,5)\) → \((-1,e\left(\frac{119}{396}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 1588 }(1215, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{99}\right)\) | \(e\left(\frac{119}{396}\right)\) | \(e\left(\frac{145}{396}\right)\) | \(e\left(\frac{38}{99}\right)\) | \(e\left(\frac{113}{198}\right)\) | \(e\left(\frac{139}{396}\right)\) | \(e\left(\frac{65}{132}\right)\) | \(e\left(\frac{41}{132}\right)\) | \(e\left(\frac{191}{198}\right)\) | \(e\left(\frac{221}{396}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)