Properties

Label 15840.5473
Modulus $15840$
Conductor $55$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15840, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,0,0,15,18]))
 
Copy content pari:[g,chi] = znchar(Mod(5473,15840))
 

Basic properties

Modulus: \(15840\)
Conductor: \(55\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{55}(28,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15840.ji

\(\chi_{15840}(2593,\cdot)\) \(\chi_{15840}(4033,\cdot)\) \(\chi_{15840}(4897,\cdot)\) \(\chi_{15840}(5473,\cdot)\) \(\chi_{15840}(11233,\cdot)\) \(\chi_{15840}(12097,\cdot)\) \(\chi_{15840}(13537,\cdot)\) \(\chi_{15840}(14977,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: \(\Q(\zeta_{55})^+\)

Values on generators

\((991,13861,3521,6337,14401)\) → \((1,1,1,-i,e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 15840 }(5473, a) \) \(1\)\(1\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(i\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15840 }(5473,a) \;\) at \(\;a = \) e.g. 2