Properties

Label 15840.1597
Modulus $15840$
Conductor $15840$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15840, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([0,45,40,30,12]))
 
Copy content pari:[g,chi] = znchar(Mod(1597,15840))
 

Basic properties

Modulus: \(15840\)
Conductor: \(15840\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15840.qc

\(\chi_{15840}(853,\cdot)\) \(\chi_{15840}(877,\cdot)\) \(\chi_{15840}(1597,\cdot)\) \(\chi_{15840}(2317,\cdot)\) \(\chi_{15840}(3253,\cdot)\) \(\chi_{15840}(3517,\cdot)\) \(\chi_{15840}(3757,\cdot)\) \(\chi_{15840}(3973,\cdot)\) \(\chi_{15840}(4237,\cdot)\) \(\chi_{15840}(4693,\cdot)\) \(\chi_{15840}(4957,\cdot)\) \(\chi_{15840}(5893,\cdot)\) \(\chi_{15840}(6133,\cdot)\) \(\chi_{15840}(6397,\cdot)\) \(\chi_{15840}(6613,\cdot)\) \(\chi_{15840}(7333,\cdot)\) \(\chi_{15840}(8773,\cdot)\) \(\chi_{15840}(8797,\cdot)\) \(\chi_{15840}(9517,\cdot)\) \(\chi_{15840}(10237,\cdot)\) \(\chi_{15840}(11173,\cdot)\) \(\chi_{15840}(11437,\cdot)\) \(\chi_{15840}(11677,\cdot)\) \(\chi_{15840}(11893,\cdot)\) \(\chi_{15840}(12157,\cdot)\) \(\chi_{15840}(12613,\cdot)\) \(\chi_{15840}(12877,\cdot)\) \(\chi_{15840}(13813,\cdot)\) \(\chi_{15840}(14053,\cdot)\) \(\chi_{15840}(14317,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((991,13861,3521,6337,14401)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{3}\right),i,e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 15840 }(1597, a) \) \(1\)\(1\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{17}{120}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{17}{40}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{79}{120}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{13}{60}\right)\)\(e\left(\frac{11}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15840 }(1597,a) \;\) at \(\;a = \) e.g. 2