sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(15840, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([0,45,40,30,12]))
pari:[g,chi] = znchar(Mod(1597,15840))
| Modulus: | \(15840\) | |
| Conductor: | \(15840\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{15840}(853,\cdot)\)
\(\chi_{15840}(877,\cdot)\)
\(\chi_{15840}(1597,\cdot)\)
\(\chi_{15840}(2317,\cdot)\)
\(\chi_{15840}(3253,\cdot)\)
\(\chi_{15840}(3517,\cdot)\)
\(\chi_{15840}(3757,\cdot)\)
\(\chi_{15840}(3973,\cdot)\)
\(\chi_{15840}(4237,\cdot)\)
\(\chi_{15840}(4693,\cdot)\)
\(\chi_{15840}(4957,\cdot)\)
\(\chi_{15840}(5893,\cdot)\)
\(\chi_{15840}(6133,\cdot)\)
\(\chi_{15840}(6397,\cdot)\)
\(\chi_{15840}(6613,\cdot)\)
\(\chi_{15840}(7333,\cdot)\)
\(\chi_{15840}(8773,\cdot)\)
\(\chi_{15840}(8797,\cdot)\)
\(\chi_{15840}(9517,\cdot)\)
\(\chi_{15840}(10237,\cdot)\)
\(\chi_{15840}(11173,\cdot)\)
\(\chi_{15840}(11437,\cdot)\)
\(\chi_{15840}(11677,\cdot)\)
\(\chi_{15840}(11893,\cdot)\)
\(\chi_{15840}(12157,\cdot)\)
\(\chi_{15840}(12613,\cdot)\)
\(\chi_{15840}(12877,\cdot)\)
\(\chi_{15840}(13813,\cdot)\)
\(\chi_{15840}(14053,\cdot)\)
\(\chi_{15840}(14317,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((991,13861,3521,6337,14401)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{3}\right),i,e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 15840 }(1597, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{17}{120}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{79}{120}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{11}{24}\right)\) |
sage:chi.jacobi_sum(n)