Properties

Label 15800.13169
Modulus $15800$
Conductor $1975$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15800, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,0,27,20]))
 
Copy content pari:[g,chi] = znchar(Mod(13169,15800))
 

Basic properties

Modulus: \(15800\)
Conductor: \(1975\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1975}(1319,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15800.dr

\(\chi_{15800}(529,\cdot)\) \(\chi_{15800}(1129,\cdot)\) \(\chi_{15800}(3689,\cdot)\) \(\chi_{15800}(4289,\cdot)\) \(\chi_{15800}(10009,\cdot)\) \(\chi_{15800}(10609,\cdot)\) \(\chi_{15800}(13169,\cdot)\) \(\chi_{15800}(13769,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((3951,7901,11377,12801)\) → \((1,1,e\left(\frac{9}{10}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 15800 }(13169, a) \) \(1\)\(1\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{9}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15800 }(13169,a) \;\) at \(\;a = \) e.g. 2