sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(158, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([18]))
pari:[g,chi] = znchar(Mod(21,158))
\(\chi_{158}(21,\cdot)\)
\(\chi_{158}(65,\cdot)\)
\(\chi_{158}(67,\cdot)\)
\(\chi_{158}(87,\cdot)\)
\(\chi_{158}(89,\cdot)\)
\(\chi_{158}(97,\cdot)\)
\(\chi_{158}(101,\cdot)\)
\(\chi_{158}(117,\cdot)\)
\(\chi_{158}(125,\cdot)\)
\(\chi_{158}(131,\cdot)\)
\(\chi_{158}(141,\cdot)\)
\(\chi_{158}(143,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{9}{13}\right)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 158 }(21, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)