Properties

Label 1576.35
Modulus $1576$
Conductor $1576$
Order $196$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1576, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([98,98,39]))
 
Copy content pari:[g,chi] = znchar(Mod(35,1576))
 

Basic properties

Modulus: \(1576\)
Conductor: \(1576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1576.bi

\(\chi_{1576}(3,\cdot)\) \(\chi_{1576}(11,\cdot)\) \(\chi_{1576}(27,\cdot)\) \(\chi_{1576}(35,\cdot)\) \(\chi_{1576}(67,\cdot)\) \(\chi_{1576}(75,\cdot)\) \(\chi_{1576}(91,\cdot)\) \(\chi_{1576}(99,\cdot)\) \(\chi_{1576}(115,\cdot)\) \(\chi_{1576}(123,\cdot)\) \(\chi_{1576}(131,\cdot)\) \(\chi_{1576}(139,\cdot)\) \(\chi_{1576}(147,\cdot)\) \(\chi_{1576}(179,\cdot)\) \(\chi_{1576}(195,\cdot)\) \(\chi_{1576}(227,\cdot)\) \(\chi_{1576}(235,\cdot)\) \(\chi_{1576}(243,\cdot)\) \(\chi_{1576}(275,\cdot)\) \(\chi_{1576}(283,\cdot)\) \(\chi_{1576}(291,\cdot)\) \(\chi_{1576}(299,\cdot)\) \(\chi_{1576}(315,\cdot)\) \(\chi_{1576}(323,\cdot)\) \(\chi_{1576}(363,\cdot)\) \(\chi_{1576}(411,\cdot)\) \(\chi_{1576}(451,\cdot)\) \(\chi_{1576}(467,\cdot)\) \(\chi_{1576}(483,\cdot)\) \(\chi_{1576}(539,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1183,789,593)\) → \((-1,-1,e\left(\frac{39}{196}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1576 }(35, a) \) \(1\)\(1\)\(e\left(\frac{3}{196}\right)\)\(e\left(\frac{41}{196}\right)\)\(e\left(\frac{27}{49}\right)\)\(e\left(\frac{3}{98}\right)\)\(e\left(\frac{151}{196}\right)\)\(e\left(\frac{93}{196}\right)\)\(e\left(\frac{11}{49}\right)\)\(e\left(\frac{125}{196}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{111}{196}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1576 }(35,a) \;\) at \(\;a = \) e.g. 2