sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1576, base_ring=CyclotomicField(196))
M = H._module
chi = DirichletCharacter(H, M([98,98,39]))
pari:[g,chi] = znchar(Mod(35,1576))
| Modulus: | \(1576\) | |
| Conductor: | \(1576\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(196\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1576}(3,\cdot)\)
\(\chi_{1576}(11,\cdot)\)
\(\chi_{1576}(27,\cdot)\)
\(\chi_{1576}(35,\cdot)\)
\(\chi_{1576}(67,\cdot)\)
\(\chi_{1576}(75,\cdot)\)
\(\chi_{1576}(91,\cdot)\)
\(\chi_{1576}(99,\cdot)\)
\(\chi_{1576}(115,\cdot)\)
\(\chi_{1576}(123,\cdot)\)
\(\chi_{1576}(131,\cdot)\)
\(\chi_{1576}(139,\cdot)\)
\(\chi_{1576}(147,\cdot)\)
\(\chi_{1576}(179,\cdot)\)
\(\chi_{1576}(195,\cdot)\)
\(\chi_{1576}(227,\cdot)\)
\(\chi_{1576}(235,\cdot)\)
\(\chi_{1576}(243,\cdot)\)
\(\chi_{1576}(275,\cdot)\)
\(\chi_{1576}(283,\cdot)\)
\(\chi_{1576}(291,\cdot)\)
\(\chi_{1576}(299,\cdot)\)
\(\chi_{1576}(315,\cdot)\)
\(\chi_{1576}(323,\cdot)\)
\(\chi_{1576}(363,\cdot)\)
\(\chi_{1576}(411,\cdot)\)
\(\chi_{1576}(451,\cdot)\)
\(\chi_{1576}(467,\cdot)\)
\(\chi_{1576}(483,\cdot)\)
\(\chi_{1576}(539,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,789,593)\) → \((-1,-1,e\left(\frac{39}{196}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1576 }(35, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{196}\right)\) | \(e\left(\frac{41}{196}\right)\) | \(e\left(\frac{27}{49}\right)\) | \(e\left(\frac{3}{98}\right)\) | \(e\left(\frac{151}{196}\right)\) | \(e\left(\frac{93}{196}\right)\) | \(e\left(\frac{11}{49}\right)\) | \(e\left(\frac{125}{196}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{111}{196}\right)\) |
sage:chi.jacobi_sum(n)