Properties

Label 1576.175
Modulus $1576$
Conductor $788$
Order $98$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1576, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([49,0,64]))
 
Copy content pari:[g,chi] = znchar(Mod(175,1576))
 

Basic properties

Modulus: \(1576\)
Conductor: \(788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(98\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{788}(175,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1576.bc

\(\chi_{1576}(23,\cdot)\) \(\chi_{1576}(63,\cdot)\) \(\chi_{1576}(135,\cdot)\) \(\chi_{1576}(175,\cdot)\) \(\chi_{1576}(231,\cdot)\) \(\chi_{1576}(239,\cdot)\) \(\chi_{1576}(287,\cdot)\) \(\chi_{1576}(351,\cdot)\) \(\chi_{1576}(423,\cdot)\) \(\chi_{1576}(431,\cdot)\) \(\chi_{1576}(447,\cdot)\) \(\chi_{1576}(455,\cdot)\) \(\chi_{1576}(479,\cdot)\) \(\chi_{1576}(495,\cdot)\) \(\chi_{1576}(527,\cdot)\) \(\chi_{1576}(607,\cdot)\) \(\chi_{1576}(615,\cdot)\) \(\chi_{1576}(631,\cdot)\) \(\chi_{1576}(679,\cdot)\) \(\chi_{1576}(839,\cdot)\) \(\chi_{1576}(847,\cdot)\) \(\chi_{1576}(959,\cdot)\) \(\chi_{1576}(975,\cdot)\) \(\chi_{1576}(1039,\cdot)\) \(\chi_{1576}(1055,\cdot)\) \(\chi_{1576}(1127,\cdot)\) \(\chi_{1576}(1135,\cdot)\) \(\chi_{1576}(1143,\cdot)\) \(\chi_{1576}(1167,\cdot)\) \(\chi_{1576}(1175,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 98 polynomial

Values on generators

\((1183,789,593)\) → \((-1,1,e\left(\frac{32}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1576 }(175, a) \) \(-1\)\(1\)\(e\left(\frac{69}{98}\right)\)\(e\left(\frac{6}{49}\right)\)\(e\left(\frac{83}{98}\right)\)\(e\left(\frac{20}{49}\right)\)\(e\left(\frac{43}{98}\right)\)\(e\left(\frac{16}{49}\right)\)\(e\left(\frac{81}{98}\right)\)\(e\left(\frac{41}{49}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{27}{49}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1576 }(175,a) \;\) at \(\;a = \) e.g. 2