Properties

Label 1576.1007
Modulus $1576$
Conductor $788$
Order $98$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1576, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([49,0,15]))
 
Copy content pari:[g,chi] = znchar(Mod(1007,1576))
 

Basic properties

Modulus: \(1576\)
Conductor: \(788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(98\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{788}(219,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1576.be

\(\chi_{1576}(7,\cdot)\) \(\chi_{1576}(15,\cdot)\) \(\chi_{1576}(39,\cdot)\) \(\chi_{1576}(47,\cdot)\) \(\chi_{1576}(55,\cdot)\) \(\chi_{1576}(127,\cdot)\) \(\chi_{1576}(143,\cdot)\) \(\chi_{1576}(207,\cdot)\) \(\chi_{1576}(223,\cdot)\) \(\chi_{1576}(335,\cdot)\) \(\chi_{1576}(343,\cdot)\) \(\chi_{1576}(503,\cdot)\) \(\chi_{1576}(551,\cdot)\) \(\chi_{1576}(567,\cdot)\) \(\chi_{1576}(575,\cdot)\) \(\chi_{1576}(655,\cdot)\) \(\chi_{1576}(687,\cdot)\) \(\chi_{1576}(703,\cdot)\) \(\chi_{1576}(727,\cdot)\) \(\chi_{1576}(735,\cdot)\) \(\chi_{1576}(751,\cdot)\) \(\chi_{1576}(759,\cdot)\) \(\chi_{1576}(831,\cdot)\) \(\chi_{1576}(895,\cdot)\) \(\chi_{1576}(943,\cdot)\) \(\chi_{1576}(951,\cdot)\) \(\chi_{1576}(1007,\cdot)\) \(\chi_{1576}(1047,\cdot)\) \(\chi_{1576}(1119,\cdot)\) \(\chi_{1576}(1159,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 98 polynomial

Values on generators

\((1183,789,593)\) → \((-1,1,e\left(\frac{15}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1576 }(1007, a) \) \(-1\)\(1\)\(e\left(\frac{10}{49}\right)\)\(e\left(\frac{61}{98}\right)\)\(e\left(\frac{83}{98}\right)\)\(e\left(\frac{20}{49}\right)\)\(e\left(\frac{46}{49}\right)\)\(e\left(\frac{81}{98}\right)\)\(e\left(\frac{81}{98}\right)\)\(e\left(\frac{33}{98}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{98}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1576 }(1007,a) \;\) at \(\;a = \) e.g. 2