sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([5,18,5]))
pari:[g,chi] = znchar(Mod(1046,1575))
Modulus: | \(1575\) | |
Conductor: | \(1575\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1575}(131,\cdot)\)
\(\chi_{1575}(416,\cdot)\)
\(\chi_{1575}(446,\cdot)\)
\(\chi_{1575}(731,\cdot)\)
\(\chi_{1575}(761,\cdot)\)
\(\chi_{1575}(1046,\cdot)\)
\(\chi_{1575}(1361,\cdot)\)
\(\chi_{1575}(1391,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,127,451)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{3}{5}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 1575 }(1046, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) |
sage:chi.jacobi_sum(n)