Properties

Label 15730.eb
Modulus $15730$
Conductor $7865$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(66)) M = H._module chi = DirichletCharacter(H, M([33,6,22])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(419,15730)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(15730\)
Conductor: \(7865\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(66\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 7865.ea
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{15730}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{66}\right)\) \(-1\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{15730}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{66}\right)\) \(-1\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{15730}(1849,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{43}{66}\right)\) \(-1\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{15730}(1959,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{47}{66}\right)\) \(-1\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{15730}(3279,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{66}\right)\) \(-1\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{15730}(4709,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{37}{66}\right)\) \(-1\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{15730}(4819,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{41}{66}\right)\) \(-1\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{15730}(6139,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{66}\right)\) \(-1\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{15730}(6249,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{66}\right)\) \(-1\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{15730}(7569,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{31}{66}\right)\) \(-1\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{15730}(7679,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{35}{66}\right)\) \(-1\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{15730}(8999,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{61}{66}\right)\) \(-1\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{15730}(9109,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{65}{66}\right)\) \(-1\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{15730}(10429,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{25}{66}\right)\) \(-1\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{15730}(10539,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{29}{66}\right)\) \(-1\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{15730}(11969,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{59}{66}\right)\) \(-1\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{15730}(13289,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{66}\right)\) \(-1\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{15730}(13399,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{23}{66}\right)\) \(-1\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{15730}(14719,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{49}{66}\right)\) \(-1\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{15730}(14829,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{53}{66}\right)\) \(-1\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{2}{11}\right)\)