Properties

Label 15730.5563
Modulus $15730$
Conductor $715$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([15,6,10]))
 
Copy content pari:[g,chi] = znchar(Mod(5563,15730))
 

Basic properties

Modulus: \(15730\)
Conductor: \(715\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{715}(558,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15730.ce

\(\chi_{15730}(233,\cdot)\) \(\chi_{15730}(2417,\cdot)\) \(\chi_{15730}(5563,\cdot)\) \(\chi_{15730}(11777,\cdot)\) \(\chi_{15730}(12557,\cdot)\) \(\chi_{15730}(12817,\cdot)\) \(\chi_{15730}(14923,\cdot)\) \(\chi_{15730}(15703,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((3147,3511,1211)\) → \((-i,e\left(\frac{3}{10}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 15730 }(5563, a) \) \(1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(1\)\(i\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15730 }(5563,a) \;\) at \(\;a = \) e.g. 2