Properties

Label 15730.1747
Modulus $15730$
Conductor $7865$
Order $220$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([55,212,165]))
 
Copy content pari:[g,chi] = znchar(Mod(1747,15730))
 

Basic properties

Modulus: \(15730\)
Conductor: \(7865\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(220\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{7865}(1747,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15730.fb

\(\chi_{15730}(203,\cdot)\) \(\chi_{15730}(317,\cdot)\) \(\chi_{15730}(333,\cdot)\) \(\chi_{15730}(577,\cdot)\) \(\chi_{15730}(707,\cdot)\) \(\chi_{15730}(983,\cdot)\) \(\chi_{15730}(1357,\cdot)\) \(\chi_{15730}(1373,\cdot)\) \(\chi_{15730}(1633,\cdot)\) \(\chi_{15730}(1747,\cdot)\) \(\chi_{15730}(1763,\cdot)\) \(\chi_{15730}(2007,\cdot)\) \(\chi_{15730}(2137,\cdot)\) \(\chi_{15730}(2413,\cdot)\) \(\chi_{15730}(2787,\cdot)\) \(\chi_{15730}(2803,\cdot)\) \(\chi_{15730}(3063,\cdot)\) \(\chi_{15730}(3177,\cdot)\) \(\chi_{15730}(3193,\cdot)\) \(\chi_{15730}(3437,\cdot)\) \(\chi_{15730}(3567,\cdot)\) \(\chi_{15730}(3843,\cdot)\) \(\chi_{15730}(4217,\cdot)\) \(\chi_{15730}(4233,\cdot)\) \(\chi_{15730}(4493,\cdot)\) \(\chi_{15730}(4623,\cdot)\) \(\chi_{15730}(4997,\cdot)\) \(\chi_{15730}(5273,\cdot)\) \(\chi_{15730}(5663,\cdot)\) \(\chi_{15730}(5923,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((3147,3511,1211)\) → \((i,e\left(\frac{53}{55}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 15730 }(1747, a) \) \(1\)\(1\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{27}{110}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{213}{220}\right)\)\(e\left(\frac{51}{220}\right)\)\(e\left(\frac{35}{44}\right)\)\(e\left(\frac{31}{44}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{97}{110}\right)\)\(e\left(\frac{137}{220}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15730 }(1747,a) \;\) at \(\;a = \) e.g. 2