Properties

Label 15730.11361
Modulus $15730$
Conductor $1573$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,46,55]))
 
Copy content pari:[g,chi] = znchar(Mod(11361,15730))
 

Basic properties

Modulus: \(15730\)
Conductor: \(1573\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1573}(350,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15730.eg

\(\chi_{15730}(181,\cdot)\) \(\chi_{15730}(311,\cdot)\) \(\chi_{15730}(961,\cdot)\) \(\chi_{15730}(1351,\cdot)\) \(\chi_{15730}(1611,\cdot)\) \(\chi_{15730}(1741,\cdot)\) \(\chi_{15730}(2391,\cdot)\) \(\chi_{15730}(2781,\cdot)\) \(\chi_{15730}(3041,\cdot)\) \(\chi_{15730}(3171,\cdot)\) \(\chi_{15730}(3821,\cdot)\) \(\chi_{15730}(4211,\cdot)\) \(\chi_{15730}(4471,\cdot)\) \(\chi_{15730}(5251,\cdot)\) \(\chi_{15730}(5641,\cdot)\) \(\chi_{15730}(5901,\cdot)\) \(\chi_{15730}(6031,\cdot)\) \(\chi_{15730}(6681,\cdot)\) \(\chi_{15730}(7071,\cdot)\) \(\chi_{15730}(7331,\cdot)\) \(\chi_{15730}(7461,\cdot)\) \(\chi_{15730}(8111,\cdot)\) \(\chi_{15730}(8501,\cdot)\) \(\chi_{15730}(8761,\cdot)\) \(\chi_{15730}(8891,\cdot)\) \(\chi_{15730}(9541,\cdot)\) \(\chi_{15730}(10321,\cdot)\) \(\chi_{15730}(11361,\cdot)\) \(\chi_{15730}(11621,\cdot)\) \(\chi_{15730}(11751,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3147,3511,1211)\) → \((1,e\left(\frac{23}{55}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 15730 }(11361, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{47}{110}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{27}{55}\right)\)\(e\left(\frac{23}{110}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{6}{55}\right)\)\(e\left(\frac{51}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15730 }(11361,a) \;\) at \(\;a = \) e.g. 2