Properties

Label 15730.10409
Modulus $15730$
Conductor $715$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,24,20]))
 
Copy content pari:[g,chi] = znchar(Mod(10409,15730))
 

Basic properties

Modulus: \(15730\)
Conductor: \(715\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{715}(399,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15730.cr

\(\chi_{15730}(9,\cdot)\) \(\chi_{15730}(269,\cdot)\) \(\chi_{15730}(1049,\cdot)\) \(\chi_{15730}(3149,\cdot)\) \(\chi_{15730}(8479,\cdot)\) \(\chi_{15730}(8739,\cdot)\) \(\chi_{15730}(9519,\cdot)\) \(\chi_{15730}(10409,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((3147,3511,1211)\) → \((-1,e\left(\frac{4}{5}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 15730 }(10409, a) \) \(1\)\(1\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{4}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15730 }(10409,a) \;\) at \(\;a = \) e.g. 2