sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1573, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([86,55]))
pari:[g,chi] = znchar(Mod(437,1573))
Modulus: | \(1573\) | |
Conductor: | \(1573\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(220\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1573}(8,\cdot)\)
\(\chi_{1573}(18,\cdot)\)
\(\chi_{1573}(57,\cdot)\)
\(\chi_{1573}(73,\cdot)\)
\(\chi_{1573}(83,\cdot)\)
\(\chi_{1573}(96,\cdot)\)
\(\chi_{1573}(138,\cdot)\)
\(\chi_{1573}(151,\cdot)\)
\(\chi_{1573}(200,\cdot)\)
\(\chi_{1573}(216,\cdot)\)
\(\chi_{1573}(226,\cdot)\)
\(\chi_{1573}(255,\cdot)\)
\(\chi_{1573}(281,\cdot)\)
\(\chi_{1573}(294,\cdot)\)
\(\chi_{1573}(304,\cdot)\)
\(\chi_{1573}(343,\cdot)\)
\(\chi_{1573}(359,\cdot)\)
\(\chi_{1573}(369,\cdot)\)
\(\chi_{1573}(382,\cdot)\)
\(\chi_{1573}(398,\cdot)\)
\(\chi_{1573}(424,\cdot)\)
\(\chi_{1573}(437,\cdot)\)
\(\chi_{1573}(447,\cdot)\)
\(\chi_{1573}(486,\cdot)\)
\(\chi_{1573}(502,\cdot)\)
\(\chi_{1573}(512,\cdot)\)
\(\chi_{1573}(525,\cdot)\)
\(\chi_{1573}(541,\cdot)\)
\(\chi_{1573}(567,\cdot)\)
\(\chi_{1573}(580,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((365,1211)\) → \((e\left(\frac{43}{110}\right),i)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 1573 }(437, a) \) |
\(1\) | \(1\) | \(e\left(\frac{141}{220}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{39}{220}\right)\) | \(e\left(\frac{9}{220}\right)\) | \(e\left(\frac{107}{220}\right)\) | \(e\left(\frac{203}{220}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) |
sage:chi.jacobi_sum(n)