sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1560, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,0,2,1,1]))
pari:[g,chi] = znchar(Mod(47,1560))
\(\chi_{1560}(47,\cdot)\)
\(\chi_{1560}(863,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((391,781,521,937,1081)\) → \((-1,1,-1,i,i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1560 }(47, a) \) |
\(1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(i\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(-i\) |
sage:chi.jacobi_sum(n)