Properties

Label 15210.hh
Modulus $15210$
Conductor $7605$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15210, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([130,39,54])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(77,15210)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(15210\)
Conductor: \(7605\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 7605.ha
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{15210}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{15}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{49}{156}\right)\)
\(\chi_{15210}(623,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{29}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{119}{156}\right)\)
\(\chi_{15210}(857,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{35}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{149}{156}\right)\)
\(\chi_{15210}(1247,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{19}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{121}{156}\right)\)
\(\chi_{15210}(1793,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{33}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{35}{156}\right)\)
\(\chi_{15210}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{17}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{156}\right)\)
\(\chi_{15210}(2417,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{23}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{37}{156}\right)\)
\(\chi_{15210}(2963,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{37}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{107}{156}\right)\)
\(\chi_{15210}(3197,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{43}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{137}{156}\right)\)
\(\chi_{15210}(3353,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{21}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{79}{156}\right)\)
\(\chi_{15210}(3587,\cdot)\) \(1\) \(1\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{27}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{109}{156}\right)\)
\(\chi_{15210}(4133,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{41}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{156}\right)\)
\(\chi_{15210}(4367,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{47}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{53}{156}\right)\)
\(\chi_{15210}(4523,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{25}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{151}{156}\right)\)
\(\chi_{15210}(4757,\cdot)\) \(1\) \(1\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{31}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{156}\right)\)
\(\chi_{15210}(5303,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{45}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{95}{156}\right)\)
\(\chi_{15210}(5537,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{51}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{125}{156}\right)\)
\(\chi_{15210}(5693,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{29}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{67}{156}\right)\)
\(\chi_{15210}(5927,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{35}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{97}{156}\right)\)
\(\chi_{15210}(6473,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{49}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{156}\right)\)
\(\chi_{15210}(6707,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{3}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{41}{156}\right)\)
\(\chi_{15210}(6863,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{33}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{139}{156}\right)\)
\(\chi_{15210}(7643,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{83}{156}\right)\)
\(\chi_{15210}(7877,\cdot)\) \(1\) \(1\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{7}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{113}{156}\right)\)
\(\chi_{15210}(8033,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{37}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{55}{156}\right)\)
\(\chi_{15210}(8267,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{43}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{85}{156}\right)\)
\(\chi_{15210}(8813,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{155}{156}\right)\)
\(\chi_{15210}(9047,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{52}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{29}{156}\right)\)
\(\chi_{15210}(9203,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{41}{52}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{127}{156}\right)\)
\(\chi_{15210}(9437,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{47}{52}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{156}\right)\)
\(\chi_{15210}(9983,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{9}{52}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{71}{156}\right)\)