Properties

Label 15210.2953
Modulus $15210$
Conductor $65$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15210, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,9,1]))
 
Copy content pari:[g,chi] = znchar(Mod(2953,15210))
 

Basic properties

Modulus: \(15210\)
Conductor: \(65\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{65}(28,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15210.cf

\(\chi_{15210}(2953,\cdot)\) \(\chi_{15210}(6103,\cdot)\) \(\chi_{15210}(7417,\cdot)\) \(\chi_{15210}(10567,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.3500313269603515625.1

Values on generators

\((6761,9127,6931)\) → \((1,-i,e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 15210 }(2953, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15210 }(2953,a) \;\) at \(\;a = \) e.g. 2