sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([65,34]))
pari:[g,chi] = znchar(Mod(1166,1521))
| Modulus: | \(1521\) | |
| Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(29,\cdot)\)
\(\chi_{1521}(113,\cdot)\)
\(\chi_{1521}(230,\cdot)\)
\(\chi_{1521}(263,\cdot)\)
\(\chi_{1521}(347,\cdot)\)
\(\chi_{1521}(380,\cdot)\)
\(\chi_{1521}(464,\cdot)\)
\(\chi_{1521}(497,\cdot)\)
\(\chi_{1521}(581,\cdot)\)
\(\chi_{1521}(614,\cdot)\)
\(\chi_{1521}(731,\cdot)\)
\(\chi_{1521}(815,\cdot)\)
\(\chi_{1521}(848,\cdot)\)
\(\chi_{1521}(932,\cdot)\)
\(\chi_{1521}(965,\cdot)\)
\(\chi_{1521}(1049,\cdot)\)
\(\chi_{1521}(1082,\cdot)\)
\(\chi_{1521}(1166,\cdot)\)
\(\chi_{1521}(1199,\cdot)\)
\(\chi_{1521}(1283,\cdot)\)
\(\chi_{1521}(1316,\cdot)\)
\(\chi_{1521}(1400,\cdot)\)
\(\chi_{1521}(1433,\cdot)\)
\(\chi_{1521}(1517,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{17}{39}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1521 }(1166, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) |
sage:chi.jacobi_sum(n)