sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,49]))
pari:[g,chi] = znchar(Mod(745,1521))
Modulus: | \(1521\) | |
Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(43,\cdot)\)
\(\chi_{1521}(49,\cdot)\)
\(\chi_{1521}(160,\cdot)\)
\(\chi_{1521}(166,\cdot)\)
\(\chi_{1521}(277,\cdot)\)
\(\chi_{1521}(283,\cdot)\)
\(\chi_{1521}(394,\cdot)\)
\(\chi_{1521}(400,\cdot)\)
\(\chi_{1521}(511,\cdot)\)
\(\chi_{1521}(517,\cdot)\)
\(\chi_{1521}(628,\cdot)\)
\(\chi_{1521}(634,\cdot)\)
\(\chi_{1521}(745,\cdot)\)
\(\chi_{1521}(751,\cdot)\)
\(\chi_{1521}(862,\cdot)\)
\(\chi_{1521}(979,\cdot)\)
\(\chi_{1521}(985,\cdot)\)
\(\chi_{1521}(1096,\cdot)\)
\(\chi_{1521}(1102,\cdot)\)
\(\chi_{1521}(1213,\cdot)\)
\(\chi_{1521}(1219,\cdot)\)
\(\chi_{1521}(1336,\cdot)\)
\(\chi_{1521}(1447,\cdot)\)
\(\chi_{1521}(1453,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{49}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 1521 }(745, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) |
sage:chi.jacobi_sum(n)