sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([130,7]))
pari:[g,chi] = znchar(Mod(635,1521))
Modulus: | \(1521\) | |
Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(20,\cdot)\)
\(\chi_{1521}(41,\cdot)\)
\(\chi_{1521}(50,\cdot)\)
\(\chi_{1521}(110,\cdot)\)
\(\chi_{1521}(137,\cdot)\)
\(\chi_{1521}(158,\cdot)\)
\(\chi_{1521}(167,\cdot)\)
\(\chi_{1521}(227,\cdot)\)
\(\chi_{1521}(254,\cdot)\)
\(\chi_{1521}(275,\cdot)\)
\(\chi_{1521}(284,\cdot)\)
\(\chi_{1521}(344,\cdot)\)
\(\chi_{1521}(371,\cdot)\)
\(\chi_{1521}(392,\cdot)\)
\(\chi_{1521}(401,\cdot)\)
\(\chi_{1521}(461,\cdot)\)
\(\chi_{1521}(509,\cdot)\)
\(\chi_{1521}(518,\cdot)\)
\(\chi_{1521}(578,\cdot)\)
\(\chi_{1521}(605,\cdot)\)
\(\chi_{1521}(626,\cdot)\)
\(\chi_{1521}(635,\cdot)\)
\(\chi_{1521}(722,\cdot)\)
\(\chi_{1521}(743,\cdot)\)
\(\chi_{1521}(752,\cdot)\)
\(\chi_{1521}(812,\cdot)\)
\(\chi_{1521}(839,\cdot)\)
\(\chi_{1521}(860,\cdot)\)
\(\chi_{1521}(869,\cdot)\)
\(\chi_{1521}(929,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{7}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 1521 }(635, a) \) |
\(1\) | \(1\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) |
sage:chi.jacobi_sum(n)