sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,66]))
pari:[g,chi] = znchar(Mod(430,1521))
| Modulus: | \(1521\) | |
| Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(39\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(40,\cdot)\)
\(\chi_{1521}(79,\cdot)\)
\(\chi_{1521}(157,\cdot)\)
\(\chi_{1521}(196,\cdot)\)
\(\chi_{1521}(274,\cdot)\)
\(\chi_{1521}(313,\cdot)\)
\(\chi_{1521}(391,\cdot)\)
\(\chi_{1521}(430,\cdot)\)
\(\chi_{1521}(547,\cdot)\)
\(\chi_{1521}(625,\cdot)\)
\(\chi_{1521}(664,\cdot)\)
\(\chi_{1521}(742,\cdot)\)
\(\chi_{1521}(781,\cdot)\)
\(\chi_{1521}(859,\cdot)\)
\(\chi_{1521}(898,\cdot)\)
\(\chi_{1521}(976,\cdot)\)
\(\chi_{1521}(1093,\cdot)\)
\(\chi_{1521}(1132,\cdot)\)
\(\chi_{1521}(1210,\cdot)\)
\(\chi_{1521}(1249,\cdot)\)
\(\chi_{1521}(1327,\cdot)\)
\(\chi_{1521}(1366,\cdot)\)
\(\chi_{1521}(1444,\cdot)\)
\(\chi_{1521}(1483,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{11}{13}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1521 }(430, a) \) |
\(1\) | \(1\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) |
sage:chi.jacobi_sum(n)