Properties

Label 1502.95
Modulus $1502$
Conductor $751$
Order $375$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1502, base_ring=CyclotomicField(750)) M = H._module chi = DirichletCharacter(H, M([254]))
 
Copy content pari:[g,chi] = znchar(Mod(95,1502))
 

Basic properties

Modulus: \(1502\)
Conductor: \(751\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(375\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{751}(95,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1502.o

\(\chi_{1502}(5,\cdot)\) \(\chi_{1502}(9,\cdot)\) \(\chi_{1502}(13,\cdot)\) \(\chi_{1502}(19,\cdot)\) \(\chi_{1502}(21,\cdot)\) \(\chi_{1502}(23,\cdot)\) \(\chi_{1502}(25,\cdot)\) \(\chi_{1502}(33,\cdot)\) \(\chi_{1502}(37,\cdot)\) \(\chi_{1502}(47,\cdot)\) \(\chi_{1502}(59,\cdot)\) \(\chi_{1502}(65,\cdot)\) \(\chi_{1502}(77,\cdot)\) \(\chi_{1502}(81,\cdot)\) \(\chi_{1502}(87,\cdot)\) \(\chi_{1502}(89,\cdot)\) \(\chi_{1502}(95,\cdot)\) \(\chi_{1502}(97,\cdot)\) \(\chi_{1502}(105,\cdot)\) \(\chi_{1502}(109,\cdot)\) \(\chi_{1502}(115,\cdot)\) \(\chi_{1502}(123,\cdot)\) \(\chi_{1502}(127,\cdot)\) \(\chi_{1502}(139,\cdot)\) \(\chi_{1502}(149,\cdot)\) \(\chi_{1502}(167,\cdot)\) \(\chi_{1502}(169,\cdot)\) \(\chi_{1502}(181,\cdot)\) \(\chi_{1502}(199,\cdot)\) \(\chi_{1502}(201,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{375})$
Fixed field: Number field defined by a degree 375 polynomial (not computed)

Values on generators

\(3\) → \(e\left(\frac{127}{375}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1502 }(95, a) \) \(1\)\(1\)\(e\left(\frac{127}{375}\right)\)\(e\left(\frac{97}{375}\right)\)\(e\left(\frac{59}{125}\right)\)\(e\left(\frac{254}{375}\right)\)\(e\left(\frac{11}{75}\right)\)\(e\left(\frac{16}{375}\right)\)\(e\left(\frac{224}{375}\right)\)\(e\left(\frac{158}{375}\right)\)\(e\left(\frac{286}{375}\right)\)\(e\left(\frac{304}{375}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1502 }(95,a) \;\) at \(\;a = \) e.g. 2