Properties

Label 1488.dq
Modulus $1488$
Conductor $496$
Order $60$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([30,45,0,8])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,1488)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1488\)
Conductor: \(496\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 496.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(35\)
\(\chi_{1488}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1488}(235,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1488}(307,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1488}(355,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1488}(379,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1488}(475,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1488}(547,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1488}(691,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1488}(763,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1488}(979,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1488}(1051,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1488}(1099,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1488}(1123,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1488}(1219,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1488}(1291,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1488}(1435,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\)