Properties

Label 1488.319
Modulus $1488$
Conductor $124$
Order $30$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,0,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(319,1488))
 

Basic properties

Modulus: \(1488\)
Conductor: \(124\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{124}(71,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1488.cw

\(\chi_{1488}(175,\cdot)\) \(\chi_{1488}(319,\cdot)\) \(\chi_{1488}(607,\cdot)\) \(\chi_{1488}(751,\cdot)\) \(\chi_{1488}(847,\cdot)\) \(\chi_{1488}(1135,\cdot)\) \(\chi_{1488}(1423,\cdot)\) \(\chi_{1488}(1471,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.615215540441622698713738389172402189599059721846784.1

Values on generators

\((559,373,497,1057)\) → \((-1,1,1,e\left(\frac{1}{15}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(35\)
\( \chi_{ 1488 }(319, a) \) \(-1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1488 }(319,a) \;\) at \(\;a = \) e.g. 2