Properties

Label 14700.5531
Modulus $14700$
Conductor $14700$
Order $70$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(70)) M = H._module chi = DirichletCharacter(H, M([35,35,28,10]))
 
Copy content pari:[g,chi] = znchar(Mod(5531,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(14700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(70\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.fu

\(\chi_{14700}(71,\cdot)\) \(\chi_{14700}(911,\cdot)\) \(\chi_{14700}(1331,\cdot)\) \(\chi_{14700}(2171,\cdot)\) \(\chi_{14700}(2591,\cdot)\) \(\chi_{14700}(3011,\cdot)\) \(\chi_{14700}(4271,\cdot)\) \(\chi_{14700}(4691,\cdot)\) \(\chi_{14700}(5111,\cdot)\) \(\chi_{14700}(5531,\cdot)\) \(\chi_{14700}(6791,\cdot)\) \(\chi_{14700}(7211,\cdot)\) \(\chi_{14700}(7631,\cdot)\) \(\chi_{14700}(8471,\cdot)\) \(\chi_{14700}(8891,\cdot)\) \(\chi_{14700}(9731,\cdot)\) \(\chi_{14700}(10571,\cdot)\) \(\chi_{14700}(10991,\cdot)\) \(\chi_{14700}(11411,\cdot)\) \(\chi_{14700}(11831,\cdot)\) \(\chi_{14700}(12671,\cdot)\) \(\chi_{14700}(13091,\cdot)\) \(\chi_{14700}(13511,\cdot)\) \(\chi_{14700}(13931,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{2}{5}\right),e\left(\frac{1}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(5531, a) \) \(1\)\(1\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{19}{70}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{61}{70}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{6}{35}\right)\)\(e\left(\frac{17}{70}\right)\)\(e\left(\frac{5}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(5531,a) \;\) at \(\;a = \) e.g. 2