sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14700, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([35,35,28,10]))
pari:[g,chi] = znchar(Mod(5531,14700))
| Modulus: | \(14700\) | |
| Conductor: | \(14700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(70\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14700}(71,\cdot)\)
\(\chi_{14700}(911,\cdot)\)
\(\chi_{14700}(1331,\cdot)\)
\(\chi_{14700}(2171,\cdot)\)
\(\chi_{14700}(2591,\cdot)\)
\(\chi_{14700}(3011,\cdot)\)
\(\chi_{14700}(4271,\cdot)\)
\(\chi_{14700}(4691,\cdot)\)
\(\chi_{14700}(5111,\cdot)\)
\(\chi_{14700}(5531,\cdot)\)
\(\chi_{14700}(6791,\cdot)\)
\(\chi_{14700}(7211,\cdot)\)
\(\chi_{14700}(7631,\cdot)\)
\(\chi_{14700}(8471,\cdot)\)
\(\chi_{14700}(8891,\cdot)\)
\(\chi_{14700}(9731,\cdot)\)
\(\chi_{14700}(10571,\cdot)\)
\(\chi_{14700}(10991,\cdot)\)
\(\chi_{14700}(11411,\cdot)\)
\(\chi_{14700}(11831,\cdot)\)
\(\chi_{14700}(12671,\cdot)\)
\(\chi_{14700}(13091,\cdot)\)
\(\chi_{14700}(13511,\cdot)\)
\(\chi_{14700}(13931,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{2}{5}\right),e\left(\frac{1}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 14700 }(5531, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{19}{70}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{5}{14}\right)\) |
sage:chi.jacobi_sum(n)