Properties

Label 14700.3869
Modulus $14700$
Conductor $3675$
Order $210$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,105,189,25]))
 
Copy content pari:[g,chi] = znchar(Mod(3869,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(3675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3675}(194,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.ha

\(\chi_{14700}(89,\cdot)\) \(\chi_{14700}(269,\cdot)\) \(\chi_{14700}(689,\cdot)\) \(\chi_{14700}(929,\cdot)\) \(\chi_{14700}(1529,\cdot)\) \(\chi_{14700}(1769,\cdot)\) \(\chi_{14700}(2189,\cdot)\) \(\chi_{14700}(2369,\cdot)\) \(\chi_{14700}(2609,\cdot)\) \(\chi_{14700}(2789,\cdot)\) \(\chi_{14700}(3029,\cdot)\) \(\chi_{14700}(3209,\cdot)\) \(\chi_{14700}(3629,\cdot)\) \(\chi_{14700}(3869,\cdot)\) \(\chi_{14700}(4289,\cdot)\) \(\chi_{14700}(4469,\cdot)\) \(\chi_{14700}(4709,\cdot)\) \(\chi_{14700}(4889,\cdot)\) \(\chi_{14700}(5129,\cdot)\) \(\chi_{14700}(5309,\cdot)\) \(\chi_{14700}(5729,\cdot)\) \(\chi_{14700}(5969,\cdot)\) \(\chi_{14700}(6569,\cdot)\) \(\chi_{14700}(6809,\cdot)\) \(\chi_{14700}(7229,\cdot)\) \(\chi_{14700}(7409,\cdot)\) \(\chi_{14700}(7829,\cdot)\) \(\chi_{14700}(8069,\cdot)\) \(\chi_{14700}(8489,\cdot)\) \(\chi_{14700}(8669,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,-1,e\left(\frac{9}{10}\right),e\left(\frac{5}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(3869, a) \) \(1\)\(1\)\(e\left(\frac{139}{210}\right)\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{37}{210}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{97}{105}\right)\)\(e\left(\frac{31}{70}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{191}{210}\right)\)\(e\left(\frac{31}{35}\right)\)\(e\left(\frac{3}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(3869,a) \;\) at \(\;a = \) e.g. 2