Properties

Label 14700.37
Modulus $14700$
Conductor $1225$
Order $420$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,0,189,320]))
 
Copy content pari:[g,chi] = znchar(Mod(37,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(37,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.hc

\(\chi_{14700}(37,\cdot)\) \(\chi_{14700}(277,\cdot)\) \(\chi_{14700}(613,\cdot)\) \(\chi_{14700}(697,\cdot)\) \(\chi_{14700}(877,\cdot)\) \(\chi_{14700}(1033,\cdot)\) \(\chi_{14700}(1117,\cdot)\) \(\chi_{14700}(1213,\cdot)\) \(\chi_{14700}(1297,\cdot)\) \(\chi_{14700}(1453,\cdot)\) \(\chi_{14700}(1633,\cdot)\) \(\chi_{14700}(1717,\cdot)\) \(\chi_{14700}(1873,\cdot)\) \(\chi_{14700}(2053,\cdot)\) \(\chi_{14700}(2377,\cdot)\) \(\chi_{14700}(2473,\cdot)\) \(\chi_{14700}(2797,\cdot)\) \(\chi_{14700}(2977,\cdot)\) \(\chi_{14700}(3133,\cdot)\) \(\chi_{14700}(3217,\cdot)\) \(\chi_{14700}(3397,\cdot)\) \(\chi_{14700}(3553,\cdot)\) \(\chi_{14700}(3637,\cdot)\) \(\chi_{14700}(3733,\cdot)\) \(\chi_{14700}(3817,\cdot)\) \(\chi_{14700}(3973,\cdot)\) \(\chi_{14700}(4153,\cdot)\) \(\chi_{14700}(4237,\cdot)\) \(\chi_{14700}(4573,\cdot)\) \(\chi_{14700}(4813,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,1,e\left(\frac{9}{20}\right),e\left(\frac{16}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(37, a) \) \(-1\)\(1\)\(e\left(\frac{71}{105}\right)\)\(e\left(\frac{97}{140}\right)\)\(e\left(\frac{377}{420}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{379}{420}\right)\)\(e\left(\frac{43}{70}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{181}{420}\right)\)\(e\left(\frac{8}{35}\right)\)\(e\left(\frac{9}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(37,a) \;\) at \(\;a = \) e.g. 2