Properties

Label 14700.17
Modulus $14700$
Conductor $3675$
Order $420$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,210,273,250]))
 
Copy content pari:[g,chi] = znchar(Mod(17,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(3675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3675}(17,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.hj

\(\chi_{14700}(17,\cdot)\) \(\chi_{14700}(173,\cdot)\) \(\chi_{14700}(353,\cdot)\) \(\chi_{14700}(437,\cdot)\) \(\chi_{14700}(677,\cdot)\) \(\chi_{14700}(773,\cdot)\) \(\chi_{14700}(1013,\cdot)\) \(\chi_{14700}(1277,\cdot)\) \(\chi_{14700}(1433,\cdot)\) \(\chi_{14700}(1517,\cdot)\) \(\chi_{14700}(1613,\cdot)\) \(\chi_{14700}(1853,\cdot)\) \(\chi_{14700}(1937,\cdot)\) \(\chi_{14700}(2033,\cdot)\) \(\chi_{14700}(2117,\cdot)\) \(\chi_{14700}(2453,\cdot)\) \(\chi_{14700}(2537,\cdot)\) \(\chi_{14700}(2777,\cdot)\) \(\chi_{14700}(3113,\cdot)\) \(\chi_{14700}(3197,\cdot)\) \(\chi_{14700}(3377,\cdot)\) \(\chi_{14700}(3533,\cdot)\) \(\chi_{14700}(3617,\cdot)\) \(\chi_{14700}(3713,\cdot)\) \(\chi_{14700}(3797,\cdot)\) \(\chi_{14700}(3953,\cdot)\) \(\chi_{14700}(4133,\cdot)\) \(\chi_{14700}(4217,\cdot)\) \(\chi_{14700}(4373,\cdot)\) \(\chi_{14700}(4553,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,-1,e\left(\frac{13}{20}\right),e\left(\frac{25}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(17, a) \) \(-1\)\(1\)\(e\left(\frac{149}{210}\right)\)\(e\left(\frac{139}{140}\right)\)\(e\left(\frac{349}{420}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{113}{420}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{377}{420}\right)\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{9}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(17,a) \;\) at \(\;a = \) e.g. 2