Properties

Label 14700.139
Modulus $14700$
Conductor $4900$
Order $70$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(70)) M = H._module chi = DirichletCharacter(H, M([35,0,21,25]))
 
Copy content pari:[g,chi] = znchar(Mod(139,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(4900\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(70\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4900}(139,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.fn

\(\chi_{14700}(139,\cdot)\) \(\chi_{14700}(559,\cdot)\) \(\chi_{14700}(1819,\cdot)\) \(\chi_{14700}(2239,\cdot)\) \(\chi_{14700}(2659,\cdot)\) \(\chi_{14700}(3079,\cdot)\) \(\chi_{14700}(4339,\cdot)\) \(\chi_{14700}(4759,\cdot)\) \(\chi_{14700}(5179,\cdot)\) \(\chi_{14700}(6019,\cdot)\) \(\chi_{14700}(6439,\cdot)\) \(\chi_{14700}(7279,\cdot)\) \(\chi_{14700}(8119,\cdot)\) \(\chi_{14700}(8539,\cdot)\) \(\chi_{14700}(8959,\cdot)\) \(\chi_{14700}(9379,\cdot)\) \(\chi_{14700}(10219,\cdot)\) \(\chi_{14700}(10639,\cdot)\) \(\chi_{14700}(11059,\cdot)\) \(\chi_{14700}(11479,\cdot)\) \(\chi_{14700}(12319,\cdot)\) \(\chi_{14700}(13159,\cdot)\) \(\chi_{14700}(13579,\cdot)\) \(\chi_{14700}(14419,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((7351,4901,1177,9901)\) → \((-1,1,e\left(\frac{3}{10}\right),e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(139, a) \) \(1\)\(1\)\(e\left(\frac{41}{70}\right)\)\(e\left(\frac{17}{35}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{13}{35}\right)\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{70}\right)\)\(e\left(\frac{39}{70}\right)\)\(e\left(\frac{1}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(139,a) \;\) at \(\;a = \) e.g. 2