Properties

Label 14700.13
Modulus $14700$
Conductor $1225$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,0,133,110]))
 
Copy content pari:[g,chi] = znchar(Mod(13,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.gj

\(\chi_{14700}(13,\cdot)\) \(\chi_{14700}(433,\cdot)\) \(\chi_{14700}(517,\cdot)\) \(\chi_{14700}(853,\cdot)\) \(\chi_{14700}(937,\cdot)\) \(\chi_{14700}(1777,\cdot)\) \(\chi_{14700}(2113,\cdot)\) \(\chi_{14700}(2197,\cdot)\) \(\chi_{14700}(2533,\cdot)\) \(\chi_{14700}(2617,\cdot)\) \(\chi_{14700}(2953,\cdot)\) \(\chi_{14700}(3373,\cdot)\) \(\chi_{14700}(3877,\cdot)\) \(\chi_{14700}(4297,\cdot)\) \(\chi_{14700}(4633,\cdot)\) \(\chi_{14700}(4717,\cdot)\) \(\chi_{14700}(5053,\cdot)\) \(\chi_{14700}(5137,\cdot)\) \(\chi_{14700}(5473,\cdot)\) \(\chi_{14700}(6313,\cdot)\) \(\chi_{14700}(6397,\cdot)\) \(\chi_{14700}(6733,\cdot)\) \(\chi_{14700}(6817,\cdot)\) \(\chi_{14700}(7237,\cdot)\) \(\chi_{14700}(7573,\cdot)\) \(\chi_{14700}(8077,\cdot)\) \(\chi_{14700}(8413,\cdot)\) \(\chi_{14700}(8497,\cdot)\) \(\chi_{14700}(8833,\cdot)\) \(\chi_{14700}(9253,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,1,e\left(\frac{19}{20}\right),e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(13, a) \) \(1\)\(1\)\(e\left(\frac{22}{35}\right)\)\(e\left(\frac{137}{140}\right)\)\(e\left(\frac{139}{140}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{43}{140}\right)\)\(e\left(\frac{3}{70}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{97}{140}\right)\)\(e\left(\frac{41}{70}\right)\)\(e\left(\frac{27}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(13,a) \;\) at \(\;a = \) e.g. 2