Properties

Label 14700.113
Modulus $14700$
Conductor $3675$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,70,133,100]))
 
Copy content pari:[g,chi] = znchar(Mod(113,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(3675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3675}(113,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.gi

\(\chi_{14700}(113,\cdot)\) \(\chi_{14700}(533,\cdot)\) \(\chi_{14700}(617,\cdot)\) \(\chi_{14700}(953,\cdot)\) \(\chi_{14700}(1037,\cdot)\) \(\chi_{14700}(1877,\cdot)\) \(\chi_{14700}(2213,\cdot)\) \(\chi_{14700}(2297,\cdot)\) \(\chi_{14700}(2633,\cdot)\) \(\chi_{14700}(2717,\cdot)\) \(\chi_{14700}(3053,\cdot)\) \(\chi_{14700}(3473,\cdot)\) \(\chi_{14700}(3977,\cdot)\) \(\chi_{14700}(4397,\cdot)\) \(\chi_{14700}(4733,\cdot)\) \(\chi_{14700}(4817,\cdot)\) \(\chi_{14700}(5153,\cdot)\) \(\chi_{14700}(5237,\cdot)\) \(\chi_{14700}(5573,\cdot)\) \(\chi_{14700}(6413,\cdot)\) \(\chi_{14700}(6497,\cdot)\) \(\chi_{14700}(6833,\cdot)\) \(\chi_{14700}(6917,\cdot)\) \(\chi_{14700}(7337,\cdot)\) \(\chi_{14700}(7673,\cdot)\) \(\chi_{14700}(8177,\cdot)\) \(\chi_{14700}(8513,\cdot)\) \(\chi_{14700}(8597,\cdot)\) \(\chi_{14700}(8933,\cdot)\) \(\chi_{14700}(9353,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,-1,e\left(\frac{19}{20}\right),e\left(\frac{5}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(113, a) \) \(1\)\(1\)\(e\left(\frac{19}{70}\right)\)\(e\left(\frac{87}{140}\right)\)\(e\left(\frac{99}{140}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{13}{140}\right)\)\(e\left(\frac{9}{35}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{57}{140}\right)\)\(e\left(\frac{1}{70}\right)\)\(e\left(\frac{15}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(113,a) \;\) at \(\;a = \) e.g. 2