sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1452, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,0,7]))
pari:[g,chi] = znchar(Mod(403,1452))
\(\chi_{1452}(403,\cdot)\)
\(\chi_{1452}(475,\cdot)\)
\(\chi_{1452}(1183,\cdot)\)
\(\chi_{1452}(1207,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,485,1333)\) → \((-1,1,e\left(\frac{7}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 1452 }(403, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) |
sage:chi.jacobi_sum(n)