Properties

Label 1452.1363
Modulus $1452$
Conductor $484$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1363,1452))
 

Basic properties

Modulus: \(1452\)
Conductor: \(484\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{484}(395,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1452.r

\(\chi_{1452}(43,\cdot)\) \(\chi_{1452}(175,\cdot)\) \(\chi_{1452}(307,\cdot)\) \(\chi_{1452}(439,\cdot)\) \(\chi_{1452}(571,\cdot)\) \(\chi_{1452}(703,\cdot)\) \(\chi_{1452}(835,\cdot)\) \(\chi_{1452}(1099,\cdot)\) \(\chi_{1452}(1231,\cdot)\) \(\chi_{1452}(1363,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.20881418433328493409957384453205152240731049426944.1

Values on generators

\((727,485,1333)\) → \((-1,1,e\left(\frac{1}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1452 }(1363, a) \) \(1\)\(1\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{2}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1452 }(1363,a) \;\) at \(\;a = \) e.g. 2