Properties

Label 1452.103
Modulus $1452$
Conductor $484$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,0,12]))
 
Copy content pari:[g,chi] = znchar(Mod(103,1452))
 

Basic properties

Modulus: \(1452\)
Conductor: \(484\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{484}(103,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1452.be

\(\chi_{1452}(31,\cdot)\) \(\chi_{1452}(91,\cdot)\) \(\chi_{1452}(103,\cdot)\) \(\chi_{1452}(115,\cdot)\) \(\chi_{1452}(163,\cdot)\) \(\chi_{1452}(223,\cdot)\) \(\chi_{1452}(235,\cdot)\) \(\chi_{1452}(247,\cdot)\) \(\chi_{1452}(295,\cdot)\) \(\chi_{1452}(355,\cdot)\) \(\chi_{1452}(367,\cdot)\) \(\chi_{1452}(379,\cdot)\) \(\chi_{1452}(427,\cdot)\) \(\chi_{1452}(499,\cdot)\) \(\chi_{1452}(559,\cdot)\) \(\chi_{1452}(619,\cdot)\) \(\chi_{1452}(631,\cdot)\) \(\chi_{1452}(643,\cdot)\) \(\chi_{1452}(691,\cdot)\) \(\chi_{1452}(751,\cdot)\) \(\chi_{1452}(763,\cdot)\) \(\chi_{1452}(775,\cdot)\) \(\chi_{1452}(823,\cdot)\) \(\chi_{1452}(883,\cdot)\) \(\chi_{1452}(895,\cdot)\) \(\chi_{1452}(907,\cdot)\) \(\chi_{1452}(955,\cdot)\) \(\chi_{1452}(1015,\cdot)\) \(\chi_{1452}(1027,\cdot)\) \(\chi_{1452}(1039,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((727,485,1333)\) → \((-1,1,e\left(\frac{6}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1452 }(103, a) \) \(-1\)\(1\)\(e\left(\frac{4}{55}\right)\)\(e\left(\frac{29}{110}\right)\)\(e\left(\frac{1}{55}\right)\)\(e\left(\frac{19}{55}\right)\)\(e\left(\frac{61}{110}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{47}{55}\right)\)\(e\left(\frac{97}{110}\right)\)\(e\left(\frac{37}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1452 }(103,a) \;\) at \(\;a = \) e.g. 2