Properties

Label 1450.773
Modulus $1450$
Conductor $725$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([77,45]))
 
Copy content pari:[g,chi] = znchar(Mod(773,1450))
 

Basic properties

Modulus: \(1450\)
Conductor: \(725\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{725}(48,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1450.bn

\(\chi_{1450}(3,\cdot)\) \(\chi_{1450}(27,\cdot)\) \(\chi_{1450}(37,\cdot)\) \(\chi_{1450}(47,\cdot)\) \(\chi_{1450}(97,\cdot)\) \(\chi_{1450}(247,\cdot)\) \(\chi_{1450}(253,\cdot)\) \(\chi_{1450}(263,\cdot)\) \(\chi_{1450}(287,\cdot)\) \(\chi_{1450}(317,\cdot)\) \(\chi_{1450}(327,\cdot)\) \(\chi_{1450}(333,\cdot)\) \(\chi_{1450}(337,\cdot)\) \(\chi_{1450}(387,\cdot)\) \(\chi_{1450}(483,\cdot)\) \(\chi_{1450}(533,\cdot)\) \(\chi_{1450}(537,\cdot)\) \(\chi_{1450}(553,\cdot)\) \(\chi_{1450}(577,\cdot)\) \(\chi_{1450}(583,\cdot)\) \(\chi_{1450}(617,\cdot)\) \(\chi_{1450}(623,\cdot)\) \(\chi_{1450}(627,\cdot)\) \(\chi_{1450}(677,\cdot)\) \(\chi_{1450}(773,\cdot)\) \(\chi_{1450}(823,\cdot)\) \(\chi_{1450}(827,\cdot)\) \(\chi_{1450}(833,\cdot)\) \(\chi_{1450}(867,\cdot)\) \(\chi_{1450}(873,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((1277,901)\) → \((e\left(\frac{11}{20}\right),e\left(\frac{9}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1450 }(773, a) \) \(1\)\(1\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{32}{35}\right)\)\(e\left(\frac{117}{140}\right)\)\(e\left(\frac{33}{140}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{111}{140}\right)\)\(e\left(\frac{9}{140}\right)\)\(e\left(\frac{67}{140}\right)\)\(e\left(\frac{13}{35}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1450 }(773,a) \;\) at \(\;a = \) e.g. 2