Properties

Label 14157.469
Modulus $14157$
Conductor $121$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,107,0]))
 
Copy content pari:[g,chi] = znchar(Mod(469,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(106,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.gl

\(\chi_{14157}(469,\cdot)\) \(\chi_{14157}(937,\cdot)\) \(\chi_{14157}(1405,\cdot)\) \(\chi_{14157}(1756,\cdot)\) \(\chi_{14157}(2107,\cdot)\) \(\chi_{14157}(2224,\cdot)\) \(\chi_{14157}(2692,\cdot)\) \(\chi_{14157}(3043,\cdot)\) \(\chi_{14157}(3394,\cdot)\) \(\chi_{14157}(3511,\cdot)\) \(\chi_{14157}(3979,\cdot)\) \(\chi_{14157}(4330,\cdot)\) \(\chi_{14157}(4681,\cdot)\) \(\chi_{14157}(4798,\cdot)\) \(\chi_{14157}(5266,\cdot)\) \(\chi_{14157}(5617,\cdot)\) \(\chi_{14157}(5968,\cdot)\) \(\chi_{14157}(6085,\cdot)\) \(\chi_{14157}(6553,\cdot)\) \(\chi_{14157}(6904,\cdot)\) \(\chi_{14157}(7255,\cdot)\) \(\chi_{14157}(7840,\cdot)\) \(\chi_{14157}(8191,\cdot)\) \(\chi_{14157}(8542,\cdot)\) \(\chi_{14157}(8659,\cdot)\) \(\chi_{14157}(9127,\cdot)\) \(\chi_{14157}(9829,\cdot)\) \(\chi_{14157}(9946,\cdot)\) \(\chi_{14157}(10414,\cdot)\) \(\chi_{14157}(10765,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((1,e\left(\frac{107}{110}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(469, a) \) \(-1\)\(1\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{54}{55}\right)\)\(e\left(\frac{89}{110}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{81}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(469,a) \;\) at \(\;a = \) e.g. 2